Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training

Author:

Lin Musong,Wang Hongbo,Niu JianyeORCID,Tian Yu,Wang XinchengORCID,Liu Guowei,Sun Li

Abstract

Muscle weakness is the primary impairment causing mobility difficulty among stroke survivors. Millions of people are unable to live normally because of mobility difficulty every year. Strength training is an effective method to improve lower extremity ability but is limited by the shortage of medical staff. Thus, this paper proposes a robot-assisted active training (RAAT) by an adaptive admittance control scheme with virtual reality interaction (AACVRI). AACVRI consists of a stiffness variable admittance controller, an adaptive controller, and virtual reality (VR) interactions. In order to provide human-robot reality interactions corresponding to virtual scenes, an admittance control law with variable stiffness term was developed to define the mechanics property of the end effector. The adaptive controller improves tracking performances by compensating interaction forces and dynamics model deviations. A virtual training environment including action following, event feedback, and competition mechanism is utilized for improving boring training experience and engaging users to maintain active state in cycling training. To verify controller performances and the feasibility of RAAT, experiments were conducted with eight subjects. Admittance control provides desired variable interactions along the trajectory. The robot responds to different virtual events by changing admittance parameters according to trigger feedbacks. Adaptive control ensures tracking errors at a low level. Subjects were maintained in active state during this strength training. Their physiological signals significantly increased, and interaction forces were at a high level. RAAT is a feasible approach for lower limb strength training, and users can independently complete high-quality active strength training under RAAT.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology (S&T) Program of Hebei, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3