Solving Flexible Job-Shop Scheduling Problem with Heterogeneous Graph Neural Network Based on Relation and Deep Reinforcement Learning

Author:

Tang Hengliang1,Dong Jinda1

Affiliation:

1. School of Information, Beijing Wuzi University, Beijing 101149, China

Abstract

Driven by the rise of intelligent manufacturing and Industry 4.0, the manufacturing industry faces significant challenges in adapting to flexible and efficient production methods. This study presents an innovative approach to solving the Flexible Job-Shop Scheduling Problem (FJSP) by integrating Heterogeneous Graph Neural Networks based on Relation (HGNNR) with Deep Reinforcement Learning (DRL). The proposed framework models the complex relationships in FJSP using heterogeneous graphs, where operations and machines are represented as nodes, with directed and undirected arcs indicating dependencies and compatibilities. The HGNNR framework comprises four key components: relation-specific subgraph decomposition, data preprocessing, feature extraction through graph convolution, and cross-relation feature fusion using a multi-head attention mechanism. For decision-making, we employ the Proximal Policy Optimization (PPO) algorithm, which iteratively updates policies to maximize cumulative rewards through continuous interaction with the environment. Experimental results on four public benchmark datasets demonstrate that our proposed method outperforms four state-of-the-art DRL-based techniques and three common rule-based heuristic algorithms, achieving superior scheduling efficiency and generalization capabilities. This framework offers a robust and scalable solution for complex industrial scheduling problems, enhancing production efficiency and adaptability.

Funder

Outstanding Young Science and Technology Worker of Science and Technology Projects in Tongzhou District

General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China

School level Youth Research Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3