Functional Electrostimulation System for a Prototype of a Human Hand Prosthesis Using Electromyography Signal Classification by Machine Learning Techniques

Author:

Orona-Trujillo Laura1,Chairez Isaac2ORCID,Alfaro-Ponce Mariel2ORCID

Affiliation:

1. School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico

2. Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Zapopan 45201, Mexico

Abstract

Functional electrical stimulation (FES) has been proven to be a reliable rehabilitation technique that increases muscle strength, reduces spasms, and enhances neuroplasticity in the long term. However, the available electrical stimulation systems on the market produce stimulation signals with no personalized voltage–current amplitudes, which could lead to muscle fatigue or incomplete enforced therapeutic motion. This work proposes an FES system aided by machine learning strategies that could adjust the stimulating signal based on electromyography (EMG) information. The regulation of the stimulated signal according to the patient’s therapeutic requirements is proposed. The EMG signals were classified using Long Short-Term Memory (LSTM) and a least-squares boosting ensemble model with an accuracy of 91.87% and 84.7%, respectively, when a set of 1200 signals from six different patients were used. The classification outcomes were used as input to a second regression machine learning algorithm that produced the adjusted electrostimulation signal required by the user according to their own electrophysiological conditions. The output of the second network served as input to a digitally processed electrostimulator that generated the necessary signal to be injected into the extremity to be treated. The results were evaluated in both simulated and robotized human hand scenarios. These evaluations demonstrated a two percent error when replicating the required movement enforced by the collected EMG information.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3