Abstract
This paper focuses on the nonlinear system identification problem, which is a basic premise of control and fault diagnosis. For Hammerstein output-error nonlinear systems, we propose an auxiliary model-based multi-innovation fractional stochastic gradient method. The scalar innovation is extended to the innovation vector for increasing the data use based on the multi-innovation identification theory. By establishing appropriate auxiliary models, the unknown variables are estimated and the improvement in the performance of parameter estimation is achieved owing to the fractional-order calculus theory. Compared with the conventional multi-innovation stochastic gradient algorithm, the proposed method is validated to obtain better estimation accuracy by the simulation results.
Funder
National Natural Science Foundation of China
the research project of Jiangnan University
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献