Kinematic and Dynamic Analysis of Eccentric Balanced Positive Torque Pumping Unit

Author:

Xu Jinchao1ORCID,Wang Wensong1,Li Wei2ORCID,Zhu Qijun1,Lu Hui1

Affiliation:

1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China

2. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

Abstract

Beam pumping units have numerous energy transfer links, significant net torque fluctuations and negative net torque in gear boxes, which lead to a high installed power and low system efficiency. In order to improve the efficiency of the pumping unit, in this paper, an eccentric balanced positive torque pump unit was designed based on the principle of eccentric balance that is small in size and adopts a flexible energy transfer system instead of a rigid structure to significantly reduce the energy transfer link. The kinematics and dynamics of the eccentric balanced positive torque pumping unit were analyzed and the ability to operate with positive torque over the entire cycle was verified using theoretical computations. And the results of the theoretical calculation were verified by using the virtual prototype simulation and analysis software ADAMS (Automatic Dynamic Analysis of Mechanical Systems); the pumping unit was optimized for relevant parameters such as the balance crank angle λ and the counterweight center of mass offset angle δ. Indoor testing and comparative field application have demonstrated that the installed power has been reduced by 80%, the weight of the entire prototype has decreased by 25% and the system efficiency has reached 24.3%. Additionally, electricity savings of over 50% have been achieved. These results indicate that the pumping unit has been designed correctly, has high reliability and has significantly improved system efficiency while also providing an obvious energy-saving effect.

Funder

Intelligent Manufacturing of High-end Petroleum and Petrochemical Equipment, School of Mechanical Science and Engineering, Northeast Petroleum University

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3