Dynamic Modeling of a Hydraulic Excavator Stick by Introducing Multi-Case Synthesized Load Spectrum for Bench Fatigue Test

Author:

Wang Penghui,Xiang Qingyi,Królczyk GrzegorzORCID,Lu Pengmin,Wang Binhua,Li ZhixiongORCID

Abstract

A multi-case load spectrum compiling method is proposed in this study for dynamic modeling of a hydraulic excavator stick to simplify and accelerate the fatigue bench test. This new method includes a simplified criterion of small-load-omitting threshold based on the principle of invariable fatigue damage, an extreme value inference criterion based on the overflow characteristics of the hydraulic system, and a synthetic extrapolation method under various working conditions. Firstly, a one-dimensional spectrum of a medium-sized excavator stick was compiled. Then, the program load spectrum for the bench fatigue test was obtained by modifying the one-dimensional spectrum based on the damage consistency criterion and the damage equivalent principle. Lastly, the fatigue tests were conducted using the program load spectrum, as well as using the random spectrum. The comparison results demonstrate that the damage location and fatigue life distribution of the stick using these two spectra are generally consistent, with a relative error smaller than 8.8%; however, the proposed program load spectrum can accelerate the test process with less time consuming than that of the random spectrum. As a result, the multi-case load spectrum is feasible and reliable for dynamic modeling of the hydraulic excavator stick in practice.

Funder

National Science Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3