Abstract
To obtain high-resolution and high-precision images, the aviation remote sensing stabilization platform (ARSSP) is used, which enables the isolation of unpredictable aerial camera movements during aerial photography. However, because of the interaxle coupling interference and other nonlinear interferences in the ARSSP system, the imaging quality of the aerial camera is adversely affected. Therefore, we derived the dynamic model of moment coupling between shafts to illustrate the problem. On the basis of the former proportion integration differentiation (PID) controller based on cerebellar neural network, a nonlinear cross feedback decoupling scheme is adopted to reduce the adverse effects of these interferences. The cerebellar model articulation controller (CMAC) based on synovial membrane control (SMC) is used to reduce the nonlinear interferences caused by the new cross-decoupling module. To verify the effectiveness of the scheme, simulation, indoor and outdoor experiments were conducted. The results showed that the SMC-CMAC significantly reduced the interaxle coupling effect and effectively suppressed the nonlinear interference, resulting in a good tracking performance of the ARSSP system.
Funder
Science and Technology Development Key Projects of Jilin Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Reference17 articles.
1. Development of a high-resolution aerial remote-sensing system for precision agriculture;Bagheri;Int. J. Remote Sens.,2017
2. Main factors affecting the quality of aerial images;Xiu;Infrared,2005
3. Error tolerance and effects analysis of satellite vibration characteristics and measurement error on TDICCD image restoration;Hu;Infrared Phys. Technol.,2018
4. Yu, H. (2013). Decoupling and Control of Three-Axis Turntable, Harbin Institute of Technology.
5. Decoupling and control of three-axis turret based on modified repetitive control system;Cunhai;Electro-Opt. Technol. Appl.,2014