Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations

Author:

Soeiro Luiz Gustavo G.1,Filho Braz J. Cardoso2

Affiliation:

1. Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil

2. Department of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil

Abstract

The last decade has seen a rapid increase in the development and launch of a large number of hybrid and electric vehicles on the world market, a trend that is expected to accelerate in the medium to long term. However, not all markets in the world follow this trend at the same speed, conventional vehicles based on conventional energy systems, as start–stop systems, are prevalent in emerging markets. In Brazil, a unique biofuel energy program using sugar cane ethanol as an alternative fuel for ICE (internal combustion engines) has been successful for over forty years, and it can be used together with hybrid technologies. The introduction of micro-hybrid technologies and strategies in conventional vehicles has a significant impact on power system management, and developing and analyzing new systems and strategies can be time-consuming and expensive. Hence, the development of new HIL (hardware-in-the-loop) test systems or new methods for existing HIL systems is critical. In this paper, a modeling technique is suggested to incorporate a vehicle’s energy system into current HIL systems for studying micro-hybrid technologies and evaluating new proposals. By analyzing the impact of various strategies on fuel efficiency and the energy balance of the electric system, this modeling technique can assist in enhancing vehicle system efficiency, reducing fuel consumption, and lowering emissions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference39 articles.

1. IEA (2022, October 01). Global EV Outlook 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022.

2. Efficiency enhancement of spark-ignition engines using a continuous variable valve timing system for load control;Osorio;Energy,2018

3. ANFAVEA (2021). Associação Nacional dos Fabricantes de Veículos Automotores. Cenários e Desafios do Brasil no Caminho da Descarbonização do Setor Automotivo, ANFAVEA.

4. Electric vehicles: The role and importance of standards in an emerging market;Brown;Energy Policy,2010

5. The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases;Masiero;Renew. Sustain. Energy Rev.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3