Abstract
Recently, numerous new meta-heuristic algorithms have been proposed for solving optimization problems. According to the Non-Free Lunch theorem, we learn that no single algorithm can solve all optimization problems. In order to solve industrial engineering design problems more efficiently, we, inspired by the algorithm framework of the Arithmetic Optimization Algorithm (AOA) and the Harris Hawks Optimization (HHO), propose a novel hybrid algorithm based on these two algorithms, named EAOAHHO in this paper. The pinhole imaging opposition-based learning is introduced into the proposed algorithm to increase the original population diversity and the capability to escape from local optima. Furthermore, the introduction of composite mutation strategy enhances the proposed EAOAHHO exploitation and exploration to obtain better convergence accuracy. The performance of EAOAHHO is verified on 23 benchmark functions and the IEEE CEC2017 test suite. Finally, we verify the superiority of the proposed EAOAHHO over the other advanced meta-heuristic algorithms for solving four industrial engineering design problems.
Funder
China Geological Survey
JLU Science and Technology Innovative Research Team
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献