Abstract
This paper describes the design of a prosthetic hand for wrist amputations. The mechanism considers the use of three actuators: one each for the movement of the little finger, annular finger, and middle finger. The second actuator controls the index finger, and the third controls the thumb. The prototype is considered relevant as it is able to move the distal phalanx in all fingers; the little, annular, and middle fingers are able to adapt to the shape of the object being gripped (adaptive grip). The sequence of movements achieved with the thumb emulate the opposition/reposition and flexion/extension movements, commanded by a single actuator. The proposed design was built by additive manufacturing and effortlessly achieves a large number of grips. Additionally, the prosthesis could perform specific movements, such as holding a needle, although this grip demands higher precision in the control of the fingers. Due to the manufacturing method, the prosthesis weighs only 200 g, increasing to 450 g when the actuators are included, therefore weighing less than an average adult’s hand.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献