Effects of Matching between the Inducer and the Impeller of a Centrifugal Pump on Its Cavitation Performance

Author:

Wang Daocheng,Gao Bingwen,Chen Yunzhang,Pan Yufan,Luo Jinping,Liu Lei,Wei Qingxi,Liu LijunORCID

Abstract

The inducer is often used to prevent cavitation in a centrifugal pump. However, it may lead to deterioration of the cavitation performance of the pump when poorly matched with the impeller. Numerical simulations are employed to study the effects of the matching, specifically, the axial space and the circumferential deflection between the inducer and the impeller, on the cavitation performance. The results show that the inducer destroys the rotational symmetry of the velocity distribution at the inlet of the impeller, resulting in the influence of cavitation on the part of the channels in advance, which explains why the inducer cannot improve the cavitation performance even though it improves the inlet energy of the impeller. On the basis of not changing the geometric shape of the inducer and the impeller, the suction-specific speed is increased by nearly 300 by only adjusting the axial space and by nearly 100 by only adjusting the circumferential deflection. The cavitation performance is better with a larger axial space. There is an optimal value of the circumferential deflection at which the pump works at the best cavitation performance. The effect of the axial space on the overall cavitation performance is more significant than that of the circumferential deflection. The results provide a useful reference for the design and installation of a centrifugal pump inducer.

Funder

National Key R&D Program of China

Xi’an Jiaotong University

Xi’an Pump and Valve plant Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3