Flow Loss Analysis and Optimal Design of a Diving Tubular Pump

Author:

Yang Xiao,Tian Ding,Si QiaoruiORCID,Liao Minquan,He Jiawei,He Xiaoke,Liu Zhonghai

Abstract

As important parts of underground water conveyance equipment, diving tubular pumps are widely used in various fields related to the national economy. Research and development of submersible pumps with better performance have become green goals that need to be achieved urgently in low-carbon development. This paper provides an effective approach for the enhancement of the performance of a diving tubular pump by adopting computational fluid dynamics, one-dimensional theory, and response surface methodology. First, the flow loss characteristics of the pump under several flow rate conditions are analyzed by entropy production theory, and then the impeller and guide vanes are redesigned using the traditional one-dimensional theory. Then, the surface response experimental method is used to improve pump hydraulic efficiency. The streamline angle (A) of the front cover of the impeller blade, the placement angle (B) of the middle streamline inlet, and the placement angle (C) of the rear cover flowline inlet are the response variables to optimize the design parameters of the diving tubular pump. Results show that wall entropy production and turbulent kinetic energy entropy production play the leading role in the internal flow loss of the diving tubular pump, while viscous entropy production can be ignored. The flow loss inside the impeller is mainly concentrated at the inlet and the outlet of the impeller blade, and the flow loss inside the guide vane is mainly concentrated in the area near the guide vane and the entrance of the guide vane. A, B, and C are all significant factors that affect efficiency. The order of the influencing factors from strong to weak is as follows: A2 (p = 0.000) > C (p = 0.007) = A × B (p = 0.007) > B (p = 0.023) > B2 (p = 0.066) > A × C (p = 0.094) > A (p = 0.162) > C2 (p = 0.386) > A × B (p = 0.421). The best combination of response variables after surface response test design is A = 9°, B = 31°, and C = 36°. After optimization, the pump efficiency and the head of the model pump are increased by 32.99% and 18.71%, respectively, under the design flow rate. The optimized model pump is subjected to tests, and the test data and the simulation data are in good agreement, which proves the feasibility of using the surface response method to optimize the design of the model pump.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Industry University Research Cooperation Project of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3