Improved DCNN Based on Multi-Source Signals for Motor Compound Fault Diagnosis

Author:

Gong XiaoyunORCID,Zhi ZehengORCID,Feng Kunpeng,Du WenliaoORCID,Wang Tao

Abstract

Induction motors, the key equipment for rotating machinery, are prone to compound faults, such as a broken rotor bars and bearing defects. It is difficult to extract fault features and identify faults from a single signal because multiple fault features overlap and interfere with each other in a compound fault. Since current signals and vibration signals have different sensitivities to broken rotor and bearing faults, a multi-channel deep convolutional neural network (MC-DCNN) fault diagnosis model based on multi-source signals is proposed in this paper, which integrates the original signals of vibration and current of the motor. Dynamic attenuation learning rate and SELU activation function were used to improve the network hyperparameters of MC-DCNN. The dynamic attenuated learning rate can improve the stability of model training and avoid model collapse effectively. The SELU activation function can avoid the problems of gradient disappearance and gradient explosion during model iteration due to its function configuration, thereby avoiding the model falling into local optima. Experiments showed that the proposed model can effectively solve the problem of motor compound fault identification, and three comparative experiments verified that the improved method can improve the stability of model training and the accuracy of fault identification.

Funder

University Key Teacher of Henan Educational Department

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3