CLOVER Robot: A Minimally Actuated Jumping Robotic Platform

Author:

Macario-Rojas AlejandroORCID,Parslew BenORCID,Weightman AndrewORCID,Smith Katharine LucyORCID

Abstract

Robots have been critical instruments to exploration of extreme environments by providing access to environments beyond human limitations. Jumping robot concepts are attractive solutions to negotiate complex and cluttered terrain. However, among the engineering challenges that need to be addressed to enable sustained operation of jumping robot concepts in extreme environments, the reduction of mechanical failure modes is one of the most fundamental. This study sets out to develop a jumping robot design, with a focus on a minimal actuation to support reduced mechanism maintenance and thus limit the number of mechanical failure modes. We present the synthesis of a Sarrus-style linkage to constrain the system to a single translational degree of freedom thus removing the need for synchronising gears, which exhibit high failure rates in dusty environments. We have restricted the present research to vertical solid jumps to assess the performance of the fundamental main-drive linkage. A laboratory demonstrator assists the transfer of theoretical concepts and approaches to practical implementation. The laboratory demonstrator performs jumps with 63% potential-to-kinetic energy conversion efficiency, with a theoretical maximum of 73%. Satisfactory operation opens up design optimisation and directional jump capability towards the development of a jumping robotic platform for extreme environments exploration.

Funder

Future AI and Robotics Hub for Space

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference36 articles.

1. The MIT Humanoid Robot: Design, Motion Planning, and Control For Acrobatic Behaviors;Chignoli;arXiv,2021

2. Controllability and Stability Analysis of Planar Snake Robot Locomotion

3. Design and mobility evaluation of tracked lunar vehicle

4. Surface navigation and mobility intelligence on the Mars Exploration Rovers;Maimone;Intell. Space Robot.,2006

5. Robot mobility systems for planetary surface exploration–state-of-the-art and future outlook: A literature survey;Seeni;Aerosp. Technol. Adv.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3