Research on Path Planning and Trajectory Tracking of an Unmanned Electric Shovel Based on Improved APF and Preview Deviation Fuzzy Control

Author:

Fang Yi,Wang Shuai,Bi Qiushi,Wu Guohua,Guan Wei,Wang Yongpeng,Yan Chuliang

Abstract

With the development and upgrading of intelligent mines, research on the unmanned walking of intelligent electric shovels (ES) has been carried out to improve the moving efficiency of extra-large excavators. This paper first introduces an electric shovel’s primary moving condition in an open-pit mine. According to the moving characteristics of the heavy-duty crawler, the artificial potential field (APF) algorithm is improved to plan the moving trajectory of the electric shovel and carry out simulation verification. A dynamic model of an electric shovel is established. A fuzzy control tracking method is proposed based on preview displacement and centroid displacement deviation. The robustness of the tracking algorithm is verified by multi-condition simulation. Finally, the electric shovel prototype is tested through path planning and tracking experiments. The experimental results show that the improved artificial potential field algorithm can plan an obstacle-free path that satisfies the movement of an electric shovel, and the electric shovel can quickly track the preset trajectory. The maximum deviation of the track tracking center of mass is no more than 10 cm, and the deviation of the heading angle when the shovel reaches the endpoint is within 2°.

Funder

the Science and Technology Development Fund of Macau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3