An Internet-of-Things-Based Dynamic Scheduling Optimization Method for Unreliable Flexible Manufacturing Systems under Complex Operational Conditions

Author:

Dabwan Abdulmajeed1ORCID,Kaid Husam1ORCID,Al-Ahmari Abdulrahman23ORCID,Alqahtani Khaled N.1ORCID,Ameen Wadea4ORCID

Affiliation:

1. Industrial Engineering Department, College of Engineering, Taibah University, Medina 41411, Saudi Arabia

2. Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

3. Raytheon Chair for Systems Engineering (RCSE Chair), Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia

4. Industrial Engineering Department, College of Engineering and Architecture, Alyamamah University, Riyadh 11512, Saudi Arabia

Abstract

The dynamic scheduling problem (DSP) in unreliable flexible manufacturing systems (UFMSs) with concurrency, conflicts, resource sharing, and sequential operations is a complex optimization problem that requires the use of efficient solution methodologies. The effectiveness of scheduling UFMSs relies on the quality of equipment maintenance. Currently, UFMSs with consistently large queues of parts awaiting service employ a repair-after-failure approach as a standard maintenance procedure. This method may require unexpected resources, incur costs, consume time, and potentially disrupt the operations of other UFMSs, either partially or fully. This study suggests using a predictive maintenance (PdM) strategy that utilizes the Internet of Things (IoT) to predict and avoid early mechanical equipment failures before they happen in UFMSs, thereby reducing unplanned downtime and enhancing reliability. Therefore, the objective of this paper is to construct timed Petri net (TPN) models using the IoT for the PdM configuration of mechanical equipment in the dynamic scheduling problem of UFMSs. This necessitates that users represent the specific problem using TPNs. The process of PN modeling requires the utilization of domain knowledge pertaining to the target problems as well as to machine information. However, it is important to note that the modeling rules for PNs are straightforward and limited in number. Consequently, the TPN model is applied to generate and formulate mixed-integer linear programming (MILP) instances accurately. This is done to identify the optimal production cycle time, which may be implemented in real-life scenarios. Several UFMS instances are used to demonstrate the applications and effectiveness of the proposed method. The computational results demonstrate that the proposed method shows superior solution quality, effectively solves instances for a total of 10 parts and 6 machines, and achieves a solution in a reasonable CPU time.

Funder

Raytheon Chair for Systems Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3