Optimal Design of High-Speed Electric Machines for Electric Vehicles: A Case Study of 100 kW V-Shaped Interior PMSM

Author:

El Hajji Taha,Hlioui Sami,Louf François,Gabsi Mohamed,Mermaz-Rollet Guillaume,Belhadi M’Hamed

Abstract

The need of compact machines increased in recent years due to increases in raw materials’ price. Hence, many studies are currently being conducted on high-speed challenges to propose an optimal design methodology. AC losses in windings are often not included in the optimization process and are treated in post-processing by choosing a suitable conductor’s diameter to mitigate skin and proximity effects. This paper presents an optimization and design methodology for high-speed electric machines considering these losses, using models with an interesting trade-off between computation time and accuracy, which is helpful for large-scale optimization, in which more than 9,600,000 machines are evaluated. Optimizations are conducted on 100 kW high-speed one-layer V-shaped interior permanent magnet synchronous machines, widely used in vehicles thanks to their high power density, based on the specifications of the Peugeot e208, for different values of pole pairs and maximum speed. The influence of lamination thickness, fill factor, and maximum current density on the optimal design is also investigated. This paper concludes the utility of increasing speed to achieve high power density and proposes best alternatives regarding automotive constraints. Results show that the number of pole pairs is not always a key parameter in obtaining the lowest volume, especially at high speed.

Funder

OpenLab Electrical Engineering for Mobility, Stellantis, France

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3