Author:
Zhang Junlong,Hu Yin,Jiang Jie,Zan Hao
Abstract
In order to understand the damping effect and energy dissipation mechanism of the obstacle grid particle dampers, we conduct experimental and simulated studies. In this paper, the obstacle grid particle dampers are applied to the cantilever beam structure. The effect of filling ratio, particle size, particle material and excitation amplitude of the obstacle grid particle damper on the vibration characteristics of the cantilever beam is studied experimentally and compared with the conventional particle damper for damping effect. A simulation model of the particle damper was developed and experimentally validated using the discrete element method. The experimental results show that the vibration acceleration response of the obstacle grid particle damper decreases by 10.4 dB compared with the conventional particle damper at 90% filling ratio. The obstacle grid particle damper increases the area of energy transfer between the external vibration energy and the particles. It makes the particles, which originally have almost no contribution to the energy dissipation, produce violent motion and participate in the energy dissipation process, thus effectively improving the damping performance of the particle dampers.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献