Simulation Modeling and Temperature Over-Advance Perception of Mine Hoist System Based on Digital Twin Technology

Author:

Liang Xuejun123ORCID,Wu Juan123,Ruan Kaiyi123

Affiliation:

1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Shanxi Province Engineer Technology Research Center for Mine Fluid Control, Taiyuan 030024, China

3. National-Local Joint Engineering Laboratory of Mining Fluid Control, Taiyuan 030024, China

Abstract

The temperature prediction of hoist motor is one of the effective ways to ensure the safe production of mine hoist. Digital twin technology is a technology that combines the physical system of the real world with the digital model of the virtual world. Through digital twin technology, the physical system in the real world can be monitored and simulated in a virtual environment, and the state information of these systems can be monitored in real time. Recurrent neural network is a kind of neural network suitable for processing sequence data, which can automatically extract and learn the feature information in sequential data. To achieve online monitoring and over-advance perception of the temperature of the mine hoist motor, a temperature prediction and advance sensing method based on digital twins and recurrent neural network is proposed. To begin with, a high-fidelity digital twin monitoring system for mine hoists is constructed, enabling the acquisition of real-time temperature data. These temperature data are then fed into a neural network for feature extraction and precise prediction of the motor’s state. Subsequently, based on the temperature prediction module in the digital twin hoist monitoring system, a user interface (UI) is developed, and a fully functional digital twin temperature monitoring system is built and experimentally validated. The experimental results demonstrate that the digital twin system effectively monitors the real-time temperature state of the motor during the operation of the mine hoist. Furthermore, the integration of digital twin and recurrent neural network enables the accurate prediction and proactive detection of temperature variations in the motor of the mine hoist. This innovative approach introduces a novel perspective for implementing predictive maintenance in the mining industry, enhancing the safety and reliability of mine hoists. Additionally, it offers valuable technical support in improving maintenance efficiency and reducing associated costs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3