Three-Dimensional Printed Abdominal Imaging Windows for In Vivo Imaging of Deep-Lying Tissues

Author:

Kuss Mitchell,Crawford Ayrianne J.,Alimi Olawale A.ORCID,Hollingsworth Michael A.,Duan BinORCID

Abstract

The ability to microscopically image diseased or damaged tissue throughout a longitudinal study in living mice would provide more insight into disease progression than having just a couple of time points to study. In vivo disease development and monitoring provides more insight than in vitro studies as well. In this study, we developed permanent 3D-printed, surgically implantable abdominal imaging windows (AIWs) to allow for longitudinal imaging of deep-lying tissues or organs in the abdominal cavity of living mice. They are designed to prevent organ movement while allowing the animal to behave normally throughout longitudinal studies. The AIW also acts as its own mounting bracket for attaching them to a custom 3D printed microscope mount that attaches to the stage of a microscope and houses the animal inside. During the imaging of the living animal, cellular and macroscopic changes over time in one location can be observed because markers can be used to find the same spot in each imaging session. We were able to deliver cancer cells to the pancreas and use the AIW to image the disease progression. The design of the AIWs can be expanded to include secondary features, such as delivery and manipulation ports and guides, and to make windows for imaging the brain, subcutaneous implants, and mammary tissue. In all, these 3D-printed AIWs and their microscope mount provide a system for enhancing the ability to image and study cellular and disease progression of deep-lying abdominal tissues of living animals during longitudinal studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3