Research on Cutting Edge form Factor of Milling Tool after Drag Finishing Preparation Based on Discrete Element Method

Author:

Zhou Lihong1,Wang Yongguo1ORCID,Lv Dejin2

Affiliation:

1. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China

2. Guohong Tool System (Wuxi) Co., Ltd., Wuxi 214000, China

Abstract

Cutting edge preparation is a precision machining process that improves the surface quality of cutting tools through the relative movement of abrasives and the tool. Research on removing materials in drag finishing can be greatly beneficial to tool manufacturing. This paper proposes the hypothesis that both abrasive wear and erosion wear act on the surface of milling tools and discusses the material removal models for abrasive wear and erosion wear. The influence of immersion depth, abrasive velocity, abrasive radius, and abrasive density on the material removal rate in two material removal forms is compared and validated by discrete element simulations. The results show that immersion depth has a greater impact on abrasive wear, while abrasive properties have a greater impact on erosion wear. The correlation between simulation results and theoretical models demonstrates the sensitivity of the two forms of wear on this surface to parameter change differences. Dragging finishing was conducted to verify the effectiveness of the simulation, and the effects of immersion depth, dragging velocity, and abrasive properties on the edge radius and form factor (K value) were studied.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3