Innovative Urban Transportation Means Developed by Integrating Design Methods

Author:

Frizziero Leonardo,Donnici Giampiero,Francia Daniela,Liverani Alfredo,Caligiana Gianni,Di Bucchianico FrancescoORCID

Abstract

The aim of this article is to apply some design methodologies to define, as a first objective, an optimized technical specification and then, as a second objective, to manage the transition from conceptual design to construction project of an innovative means of urban transport, meeting the needs of ‘renewable energy’ requirements, which then decline into this new urban vehicle formed by a hoverboard and an electric scooter. The first part of the article is focused on the conceptual design of the means by using methodologies such as the Quality Function Deployment (QFD), applied in the first phase of the work to compare some of the most popular electric scooters on the market; we then used a typical method for product marketing, i.e., the decision-making process driven by the analysis of benchmarking, suitable for quantitatively organize competitive analysis and choosing innovation targets; finally, we implemented the top-flop analysis in order to better improve the benchmarking implementation, identifying the best product on the market, basing on the highest number of innovative requirements owned by it, as shown by Frizziero in 2018 and Meuli et al. in 1997. The second part of the article focuses on the project of the kick scooter through the use of a software for the FEA simulation and on the possible realization of the prototype through a suitable connecting component.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3