An Onboard Point Cloud Semantic Segmentation System for Robotic Platforms

Author:

Wang Fei1ORCID,Yang Yujie1,Zhou Jingchun1ORCID,Zhang Weishi1ORCID

Affiliation:

1. College of Information Science and Technology, Dalian Maritime University, Dalian 116000, China

Abstract

Point clouds represent an important way for robots to perceive their environments, and can be acquired by mobile robots with LiDAR sensors or underwater robots with sonar sensors. Hence, real-time semantic segmentation of point clouds with onboard edge devices is essential for robots to apprehend their surroundings. In this paper, we propose an onboard point cloud semantic segmentation system for robotic platforms to overcome the conflict between attaining high accuracy of segmentation results and the limited available computational resources of onboard devices. Our system takes raw a sequence of point clouds as inputs, and outputs semantic segmentation results for each frame as well as a reconstructed semantic map of the environment. At the core of our system is the transformer-based hierarchical feature extraction module and fusion module. The two modules are implemented with sparse tensor technologies to speed up inference. The predictions are accumulated according to Bayes rules to generate a global semantic map. Experimental results on the SemanticKITTI dataset show that our system achieves +2.2% mIoU and 18× speed improvements compared with SOTA methods. Our system is able to process 2.2 M points per second on Jetson AGX Xavier (NVIDIA, Santa Clara, USA), demonstrating its applicability to various robotic platforms.

Funder

National Natural Science Foundation of China

Dalian Excellent Youth Talent Fund Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3