Digital Simulation of Coupled Dynamic Characteristics of Open Rotor and Dynamic Balancing Test Research

Author:

Guo Yixiang1,Chen Lifang2ORCID,Long Yuda1,Zhang Xu2

Affiliation:

1. Key Laboratory of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China

2. State Key Laboratory of High-End Compressor and System Technology, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

An aero engine, as the core power equipment of the aircraft, enables safe and stable operation with a very high reliability index, and is an important guarantee in flight. The open rotor turbine engines (contra-rotating propeller) have stood out as a research hotspot for aviation power equipment in recent years due to their outstanding advantages of low fuel consumption, high airspeed, and strong propulsion efficiency. Aiming at the problems of vibration exceeding the standard generated by imbalance during the operation of the dual-rotor system of aircraft development, the difficulty of identifying the coupled vibration under the micro-differential speed condition, and the complexity of the dynamic characteristic law, a kind of numerical simulation of the dynamics based on the finite element technology is proposed, together with an experimental research method for the fast and accurate identification of the coupled vibration of the dual-rotor system. Based on the existing open rotor engine structure design to build a simulation test bed, establish a double rotor finite element simulation digital twin model, and analyze and calculate the typical working conditions of the dynamic characteristics of parameters. The advanced algorithm of double rotor coupling vibration signal identification is utilized to carry out decoupling and dynamic balancing experimental tests, comparing the simulation results with the measured data to verify the accuracy of the technical means. The results of the study show that the vibration suppression rate of the finite element calculation simulation test carried out for the simulated double rotor is 98%, and the average vibration reduction ratio of the actual field test at 850 rpm, 1000 rpm, and 3000 rpm is over 50%, which achieves a good dynamic balancing effect, and has the merit of practical engineering application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3