Numerical Simulation and Analysis of the Flow Characteristics of the Roof-Attached Vortex (RAV) in a Closed Pump Sump

Author:

Zhang BowenORCID,Cheng Li,Zhu Minghu,Jiao Weixuan,Zhang Di

Abstract

Unsteady numerical simulation and visual experiment are used to reveal the formation mechanism of the roof-attached vortex (RAV) on the roof of the closed sump of a pumping station. The results show that RAVs mainly occur between the pump device and the rear wall of the closed sump. In the 10th period of impeller rotation, there are 2 RAVs at the roof. V1 (Vortex 1 in numerical simulation) is located directly behind the water pump unit, and V2 (Vortex 2 in numerical simulation) is close to the right wall. Significantly, the vorticity intensity at the V1 vortex core increases with the rotation of the impeller. Vtest1 (Vortex 1 in test) and Vtest2 (Vortex 2 in test) are two RAVs observed in the experiment, which are highly consistent with the unsteady numerical simulation V1 and V2. Comparing the vorticity intensity of the roof, rear wall, and sidewall, it can be seen that the maximum vorticity intensity on the roof is more significant than that on the rear wall and both sides of the wall. The roof is more likely to induce vortex. When the RAVs on the roof occur, the pressure in the middle of the bell mouth is lower than that on the sidewall, and the velocity is higher. At 2/5 T, the blade is in the low-pressure zone. The velocity distribution uniformity and velocity weighted average angle at the bell mouth also decreased. The RAVs enter the pump after being generated, which is the most harmful to the safe and stable operation of the pump. The study can provide theoretical guidance for the optimal design of the closed sump.

Funder

National Natural Science Foundation of China

Peak plan six talents in Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3