Residual-Electrical-Endurance Prediction of AC Contactor Based on CNN-GRU

Author:

Liu ShuxinORCID,Gao ShuyuORCID,Peng ShidongORCID,Liu Yang,Li JingORCID

Abstract

AC contactors are used frequently in various low-voltage control lines, so remaining-life prediction for them can significantly improve the operational reliability of power control systems. To address the problem that the existing AC contactor remaining-life prediction methods do not make full use of the correlation between previous and later states in the degradation process, a CNN-GRU (convolutional neural network-gated recurrent unit) method for AC-contactor remaining-life prediction is proposed. Firstly, the entire cycle of an AC contactor’s degradation data is obtained through a whole-life test, from which the characteristic parameters that effectively reflect the operating states of the contactor are extracted; secondly, neighborhood component analysis (NCA) and maximal information coefficient (MIC) are used to eliminate the redundant information of multidimensional parameters in order to select the optimal feature subset; and then, CNN is used to compress the feature dimension and mine the regular information between the features, so as to extract the effective feature vectors; finally, taking the AC contactor remaining electrical life as a long time sequence issue, time-series accurate prediction is performed using GRU. It is verified that this model is better than RNN (recurrent neural network), LSTM (long short-term memory) and GRU models in prediction, with an effective accuracy of 96.63%, which effectively supports the feasibility of time-series prediction in the field of the remaining-life prediction of electrical devices.

Funder

Major Science and Technology Projects of Liaoning 381 Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3