Operator-Based Nonlinear Control for a Miniature Flexible Actuator Using the Funnel Control Method

Author:

Ueno Keisuke,Kawamura Shuhei,Deng MingcongORCID

Abstract

Recently, the studies of soft actuators have been getting increased attention among various fields. Soft actuators are very safe for fragile objects and have an affinity to humans because they are composed of flexible materials. A miniature flexible actuator is a kind of pneumatically driven soft actuator. It has a bellowed shape and asymmetrical structure. This shape can generate a curling motion in two ways under positive and negative pressures with only one air tube. In the previous article, a control system using adaptive λ-tracking control was proposed. This control gain can become too large as time tends to infinity because the adaptive law exhibits a non-decreasing gain. To solve this problem, the funnel control method is proposed. The adaptive gain of this method not only increases but also decreases; however, the design scheme of the boundary function which is needed to decide on adaptive gain is not proposed here. In this article, an operator-based nonlinear control system’s design and the design scheme of the boundary function using an observer are proposed. Then, the effectiveness of the proposed method is verified by a simulation and an experiment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust tracking control for uncertain micro‐hand actuator with Prandtl‐Ishlinskii hysteresis;International Journal of Robust and Nonlinear Control;2023-07-04

2. Experimental Results on Nonlinear Position Control of Linear Slider Using Operator-Based Double-Coprime Factorization;2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE);2023-02-25

3. Development of Automatic Electric Drive Drilling System for Core Drilling;Applied Sciences;2023-01-12

4. Operator–Based Double–Coprime Factorization for State Disturbance Rejection;2022 International Conference on Advanced Mechatronic Systems (ICAMechS);2022-12-17

5. Robust tracking control for operator‐based uncertain micro‐hand actuator with Prandtl–Ishlinskii hysteresis;Asian Journal of Control;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3