Abstract
Welding has a severe impact on the efficiency of electrical machines. The heat added during the welding process affects the microstructure of the material and causes residual stress. This results in local degradation of the magnetic permeability and facilitates additional iron losses in the machine core. With the purpose of modeling and simulating welding effects in electric machines, this paper proposes a stress-dependent magnetic equivalent circuit (MEC) model for welded non-grain-oriented electrical steel laminations. A modified iron loss model is proposed to accommodate these welding effects. Furthermore, the proposed MEC model is applied to a M270-35A stator core as a case study. It was demonstrated that the core losses increase by 25% when four welding joints are applied. With a limited number of magnetic measurements on a welded and unwelded core, the model can be fully parametrized. Finally, the model was successfully validated on a core with eight welding seams at 100 Hz. The proposed model can be integrated into the design of electric machines to consider the welding effects.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献