A Normalized Terzaghi Model and Time-Step FEA for Predicting the Adsorption of a Cylindrical Object in Subsea Salvage

Author:

Nan Yibo1ORCID,Yun Feihong1ORCID,Yao Shaoming1,Liu Ming1ORCID,Wang Liquan1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

This paper proposes a normalized Terzaghi model modified based on finite element analysis to predict the adsorption force of a cylindrical object for salvage from the seabed. The maximum relative error is less than 5% compared with finite element analysis. Furthermore, the time-step finite element method is adopted to analyze the effects of the lifting force and bury depth. With increased lifting force, the critical displacement is reduced slightly, soil separation on the bottom of the object occurs earlier, and the velocity increases more quickly at the same burial depth. In addition, the soil displacement on the bottom stops increasing earlier, and the off-mud process is completed earlier. With increased burial depth, soil separation takes considerably longer, velocity increases more slowly, the maximum soil displacement is increased, and the off-mud process takes longer to complete.

Funder

Heilongjiang Provincial Natural Science Foundation of China

Key R&D Program of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3