Online Obstacle Trajectory Prediction for Autonomous Buses

Author:

Chong Yue LinnORCID,Lee Christina Dao WenORCID,Chen Liushifeng,Shen Chongjiang,Chan Ken Kok Hoe,Ang Marcelo H.ORCID

Abstract

We tackle the problem of achieving real-world autonomous driving for buses, where the task is to perceive nearby obstacles and predict their motion in the time ahead, given current and past information of the object. In this paper, we present the development of a modular pipeline for the long-term prediction of dynamic obstacles’ trajectories for an autonomous bus. The pipeline consists of three main tasks, which are the obstacle detection task, tracking task, and trajectory prediction task. Unlike most of the existing literature that performs experiments in the laboratory, our pipeline’s modules are dependent on the introductory modules in the pipeline—it uses the output of previous modules. This best emulates real-world autonomous driving and reflects the errors that may accumulate and cascade from previous modules with less than 100% accuracy. For the trajectory prediction task, we propose a training method to improve the module’s performance and attain a run-time of 10 Hz. We present the practical problems that arise from realising ready-to-deploy autonomous buses and propose methods to overcome these problems for each task. Our Singapore autonomous bus (SGAB) dataset evaluated the pipeline’s performance. The dataset is publicly available online.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on trajectory tracking control of driverless cars based on game theory;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-24

2. Prediction of moving obstacles utilizing edge-cloud cooperation based on probabilistic representation of space;2024 IEEE International Conference on Consumer Electronics (ICCE);2024-01-06

3. Visualization of the outliers detected by the SLAMICP library;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

4. An Empirical Analysis of Trajectory Prediction Techniques for Motion Prediction in Waymo Dataset;3C Tecnología_Glosas de innovación aplicadas a la pyme;2023-06-25

5. Editorial;Machines;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3