Mechanism Design and Performance Analysis of a Wearable Hand Rehabilitation Robot

Author:

Du JiazhengORCID,Tian Yu,Zhang Dagan,Wang Hongbo,Zhang Yongshun,Cheng Bo,Niu JianyeORCID

Abstract

Hand rehabilitation is critical to the recovery of post-stroke patients. However, designing a modular mechanism of the hand to improve the human-machine compatibility and precision of operation is still a challenge. This paper proposes a new type of hand exoskeleton rehabilitation robot with nine degrees of freedom. With the flexible rods, the passive range of motion for finger adduction/abduction is extended under the premise of independent flexion/extension of the metacarpophalangeal and proximal interphalangeal joint. Based on hand anatomy, the relationship between the offset of the metacarpophalangeal joint and the body height in the process of flexion and extension is discussed, and it is applied to the structure optimization and control system. The genetic algorithm is employed to achieve the size optimization, and the kinematics is analyzed. Finally, a prototype is built and preliminary experiments are carried out, including the range of motion and the grasping ability of the robot. The experimental results show that the robot can realize the patients’ hand rehabilitation function and has certain adaptability.

Funder

National Natural Science Foundation of China

Science and Technology (S&T) Program of Hebei

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference34 articles.

1. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016;Feigin;N. Engl. J. Med.,2018

2. WHO (2021). World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals, World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.

3. Jia, J. (2019). Hand Function Rehabilitation, Publishing House of Electronics Industry. [1st ed.].

4. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation;Suarez;Disabil. Rehabil. Assist. Technol.,2018

5. Exoskeletal devices for hand assistance and rehabilitation: A comprehensive analysis of state-of-the-art technologies;Noronha;IEEE Trans. Med. Robot. Bionics,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3