Author:
Hewawasam Hasitha,Ibrahim Yousef,Kahandawa Gayan
Abstract
This paper presents a novel local path planning algorithm developed based on the new free space attraction (Agoraphilic) concept. The proposed algorithm is capable of navigating robots in unknown static, as well as dynamically cluttered environments. Unlike the other navigation algorithms, the proposed algorithm takes the optimistic approach of the navigation problem. It does not look for problems to avoid, but rather for solutions to follow. This human-like decision-making behaviour distinguishes the new algorithm from all the other navigation algorithms. Furthermore, the new algorithm utilises newly developed tracking and prediction algorithms, to safely navigate mobile robots. This is further supported by a fuzzy logic controller designed to efficiently account for the inherent high uncertainties in the robot’s operational environment at a reduced computational cost. This paper also includes physical experimental results combined with bench-marking against other recent methods. The reported results verify the algorithm’s successful advantages in navigating robots in both static and dynamic environments.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献