Abstract
If sufficient historical failure life data exist, the failure distribution of the system can be estimated to identify the system initial hazard function. The conventional proportional covariate model (PCM) can reveal the dynamic relationship between the response covariates and the system hazard rate. The system hazard rate function can be constantly updated by the response covariates through the basic covariate function (BCF). Under the circumstances of sparse or zero failure data, the key point of the PCM reliability assessment method is to determine the proportional factor between covariates and the hazard rate for getting BCF. Being devoid of experiments or abundant experience of the experts, it is very hard to determine the proportional factor accurately. In this paper, an improved PCM (IPCM) is put forward based on the logistic regression model (LRM). The salient features reflecting the equipment degradation process are extracted from the existing monitoring signals, which are considered as the input of the LRM. The equipment state data defined by the failure threshold are considered as the output of the LRM. The initial reliability can be first estimated by LRM. Combined with the responding covariates, the initial hazard function can be calculated. Then, it can be incorporated into conventional PCM to implement the reliability estimation process on other equipment. The conventional PCM and the IPCM methods are respectively applied to aero-engine rotor bearing reliability assessment. The comparative results show that the assessing accuracy of IPCM is superior to the conventional PCM for small failure sample. It provides a new method for reliability estimation under sparse or zero failure data conditions.
Funder
National Nature Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献