Deep Reinforcement Learning for Distributed Flow Shop Scheduling with Flexible Maintenance

Author:

Yan Qi,Wu Wenbin,Wang Hongfeng

Abstract

A common situation arising in flow shops is that the job processing order must be the same on each machine; this is referred to as a permutation flow shop scheduling problem (PFSSP). Although many algorithms have been designed to solve PFSSPs, machine availability is typically ignored. Healthy machine conditions are essential for the production process, which can ensure productivity and quality; thus, machine deteriorating effects and periodic preventive maintenance (PM) activities are considered in this paper. Moreover, distributed production networks, which can manufacture products quickly, are of increasing interest to factories. To this end, this paper investigates an integrated optimization of the distributed PFSSP with flexible PM. With the introduction of machine maintenance constraints in multi-factory production scheduling, the complexity and computation time of solving the problem increases substantially in large-scale arithmetic cases. In order to solve it, a deep Q network-based solution framework is designed with a diminishing greedy rate in this paper. The proposed solution framework is compared to the DQN with fixed greedy rate, in addition to two well-known metaheuristic algorithms, including the genetic algorithm and the iterated greedy algorithm. Numerical studies show that the application of the proposed approach in the studied production-maintenance joint scheduling problem exhibits strong solution performance and generalization abilities. Moreover, a suitable maintenance interval is also obtained, in addition to some managerial insights.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3