Implementation of Grey Wolf, Multi-Verse and Ant Lion Metaheuristic Algorithms for Optimizing Machinability of Dry CNC Turning of Annealed and Hardened UNIMAX® Tool Steel

Author:

Fountas Nikolaos A.1,Papantoniou Ioannis2ORCID,Manolakos Dimitrios E.2ORCID,Vaxevanidis Nikolaos M.1ORCID

Affiliation:

1. Laboratory of Manufacturing Processes and Machine Tools (LMProMaT), Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education (ASPETE), GR 151 22 Amarousion, Greece

2. School of Mechanical Engineering, National Technical University of Athens, GR 157 80 Zografou, Greece

Abstract

Advances in machining technology and materials science impose the identification of optimal settings for process-related parameters to maintain high quality and process efficiency. Given the available resources, manufacturers should determine an advantageous process parameter range for their settings. In this work, the machinability of a special tool steel (UNIMAX® by Uddeholm, Sweden) under dry CNC turning is investigated. The working material is examined under two states; annealed and hardened. As major machinability indicators, main cutting force Fz (N) and mean surface roughness Ra (μm) were selected and studied under different values for the cutting conditions of cutting speed, feed rate, and depth of cut. A systematic experimental design was established as per the response surface methodology (RSM). The experimental design involved twenty base runs with eight cube points, four center points in the cube, six axial points, and two center points in the axial direction. Corresponding statistical analysis was based on analysis of variance and normal probability plots for residuals. Two regression models referring to main cutting force and surface roughness for both the annealed and hardened states of the material were developed and used as objective functions for subsequent evaluations by three modern meta-heuristics under the goal of machinability optimization, namely multi-objective grey wolf algorithm, multi-objective multi-verse algorithm and multi-objective ant lion algorithm. All algorithms were found capable of providing beneficial Pareto-optimal solutions for both main cutting force and surface roughness simultaneously whilst regression models achieved high correlation among input variables and optimization responses.

Publisher

MDPI AG

Reference30 articles.

1. Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies;Ezugwu;Int. J. Mach. Tools Manuf.,2005

2. Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools;Armendia;J. Mater. Process. Technol.,2010

3. Kalpakjian, S., and Schmid, S.R. (2022). Manufacturing Processes for Engineering Materials, Pearson. [6th ed.].

4. Hoyle, G. (1983). Electroslag Processes: Principles and Practice, Applied Science.

5. Roberts, G., Kraus, G., and Kennedy, R. (2000). Tool Steel, ASM International. [5th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3