Improved DBSCAN Spindle Bearing Condition Monitoring Method Based on Kurtosis and Sample Entropy

Author:

Zhang Yanfei,Li Yunhao,Kong Lingfei,Niu Qingbo,Bai Yu

Abstract

An improved density-based spatial clustering of applications with noise (IDBSCAN) analysis approach based on kurtosis and sample entropy (SE) is presented for the identification of operational state in order to provide accurate monitoring of spindle operation condition. This is because of the low strength of the shock signal created by bearing of precision spindle of misalignment or imbalanced load, and the difficulties in extracting shock features. Wavelet noise reduction begins by dividing the recorded vibration data into equal lengths. Features like kurtosis and entropy in the frequency domain are used to generate feature vectors that indicate the bearing operation state. IDBSCAN cluster analysis is then utilized to establish the ideal neighborhood radius (Eps) and the minimum number of objects contained within the neighborhood radius (MinPts) of the vector set, which are combined to identify the bearing operating condition features. Finally, utilizing data from the University of Cincinnati, the approach was validated and assessed, attaining a condition detection accuracy of 99.2%. As a follow-up, the spindle’s vibration characteristics were studied utilizing an unbalanced bearing’s load bench. Bearing state recognition accuracy was 98.4%, 98.4%, and 96.7%, respectively, under mild, medium, and overload circumstances, according to the results of the experimental investigation. Moreover, it shows that conditions of bearings under various unbalanced loads can be precisely monitored using the proposed method without picking up on specific sorts of failures.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3