Incipient Inter-Turn Short Circuit Detection in Induction Motors Using Cumulative Distribution Function and the EfficientNetv2 Model

Author:

Morales-Perez Carlos Javier1ORCID,Perez-Enriquez Laritza2ORCID,Amezquita-Sanchez Juan Pablo1ORCID,de Jesus Rangel-Magdaleno Jose3ORCID,Valtierra-Rodriguez Martin1ORCID,Granados-Lieberman David4ORCID

Affiliation:

1. ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C.P. 76807, QRO, Mexico

2. Coordinación de Ciencias y Tecnologías del Espacio, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro #1, Sta. María Tonanzintla, San Andrés Cholula C.P. 72840, PUE, Mexico

3. Digital Systems Group, Coordinación de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro #1, Sta. María Tonanzintla, San Andrés Cholula C.P. 72840, PUE, Mexico

4. ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, División de Ingeniera en Electromecánica, Tecnológico Nacional de México, ITS Irapuato, Carr. Irapuato-Silao km 12.5, Colonia El Copal, Irapuato C.P. 36821, GTO, Mexico

Abstract

Induction motors are one of the most used machines because they provide the necessary traction force for many industrial applications. Their easy operation, installation, maintenance, and reliability make them preferred over other electrical motors. Mechanical and electrical failures, as with other machines, can appear at any stage of their service life, making the stator intern-turn short-circuit fault (ITSC) stand out. Hence, its detection is necessary in order to extend and save useful life, avoiding a breakdown and unprogrammed maintenance processes as well as, in the worst circumstances, a total loss of the machine. Nonetheless, the challenge lies in detecting this type of fault, which has made the analysis and diagnosis processes easier. Such is the case with convolutional neural networks (CNNs), which facilitate the development of methodologies for pattern recognition in several areas of knowledge. Unfortunately, these techniques require a large amount of data for an adequate training process, which is not always available. In this sense, this paper presents a new methodology for the detection of incipient ITSC faults employing a modified cumulative distribution function (CDF) of the current stator signal. Then, these are converted to images and fed into a fast and compact CNN model, trained with a small data set, reaching up to 99.16% accuracy for seven conditions (0, 5, 10, 15, 20, 30, and 40 short-circuited turns) and four mechanical load conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3