Research of U-Net-Based CNN Architectures for Metal Surface Defect Detection

Author:

Konovalenko Ihor,Maruschak PavloORCID,Brezinová Janette,Prentkovskis OlegasORCID,Brezina Jakub

Abstract

The quality, wear and safety of metal structures can be controlled effectively, provided that surface defects, which occur on metal structures, are detected at the right time. Over the past 10 years, researchers have proposed a number of neural network architectures that have shown high efficiency in various areas, including image classification, segmentation and recognition. However, choosing the best architecture for this particular task is often problematic. In order to compare various techniques for detecting defects such as “scratch abrasion”, we created and investigated U-Net-like architectures with encoders such as ResNet, SEResNet, SEResNeXt, DenseNet, InceptionV3, Inception-ResNetV2, MobileNet and EfficientNet. The relationship between training validation metrics and final segmentation test metrics was investigated. The correlation between the loss function, the DSC, IoU, Recall, Precision and F1 validation metrics and DSC test metrics was calculated. Recognition accuracy was analyzed as affected by the optimizer during neural network training. In the context of this problem, neural networks trained using the stochastic gradient descent optimizer with Nesterov momentum were found to have the best generalizing properties. To select the best model during its training on the basis of the validation metrics, the main test metrics of recognition quality (Dice similarity coefficient) were analyzed depending on the validation metrics. The ResNet and DenseNet models were found to achieve the best generalizing properties for our task. The highest recognition accuracy was attained using the U-Net model with a ResNet152 backbone. The results obtained on the test dataset were DSC=0.9304 and IoU=0.9122.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3