Anomaly Detection Using Puzzle-Based Data Augmentation to Overcome Data Imbalances and Deficiencies

Author:

Kim Eunkyeong1ORCID,Jung Seunghwan1ORCID,Kim Minseok1ORCID,Kim Jinyong1ORCID,Kim Baekcheon1ORCID,Kim Jonggeun2ORCID,Kim Sungshin3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Artificial Intelligence Research Center, Korea Electrotechnology Research Institute, Changwon 51100, Republic of Korea

3. Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

Machine tools are used in a wide range of applications, and they can manufacture workpieces flexibly. Furthermore, they require maintenance; the overall costs include maintenance costs, which constitute a significant portion, and the costs involved in ensuring product quality. Therefore, anomaly detection in tool conditions is required, because these tools are essential industrial elements. However, the data related to tool conditions present some challenges: data imbalances and deficiencies. Data imbalances and deficiencies can affect the performance of anomaly detection models. A model trained using data with imbalances and deficiencies may miscalculate that abnormal data are normal data, leasing to errors. To overcome these problems, the proposed method has been designed using the wavelet transform, color space conversion, color extraction, puzzle-based data augmentation, and double transfer learning. The proposed method generated image data from time-series data, effectively extracted features, and generated new image data using puzzle-based data augmentation. The color information was processed to highlight features, and the proposed puzzle-based data augmentation was applied during processing to increase the amount of data to improve the performance of the anomaly detection model. The experimental results showed that the proposed method can classify normal and abnormal data with greater accuracy. In particular, the accuracy of abnormal data classification increased from 25.00% to 91.67%. This demonstrates that the proposed method is effective and can overcome data imbalances and deficiencies.

Funder

Korea Electrotechnology Research Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3