Influence of Sampling Frequency Ratio on Mode Mixing Alleviation Performance: A Comparative Study of Four Noise-Assisted Empirical Mode Decomposition Algorithms

Author:

Zhao YanqingORCID,Adjallah Kondo H.ORCID,Sava AlexandreORCID,Wang Zhouhang

Abstract

Four noise-assisted empirical mode decomposition (EMD) algorithms, i.e., ensemble EMD (EEMD), complementary ensemble EMD (CEEMD), complete ensemble EMD with adaptive noise (CEEMDAN), and improved complete ensemble EMD with adaptive noise (ICEEMDAN), are noticeable improvements to EMD, aimed at alleviating mode mixing. However, the sampling frequency ratio (SFR), i.e., the ratio between the sampling frequency and the maximum signal frequency, may significantly impact their mode mixing alleviation performance. Aimed at this issue, we investigated and compared the influence of the SFR on the mode mixing alleviation performance of these four noise-assisted EMD algorithms. The results show that for a given signal, (1) SFR has an aperiodic influence on the mode mixing alleviation performance of four noise-assisted EMD algorithms, (2) a careful selection of SFRs can significantly improve the mode mixing alleviation performance and avoid decomposition instability, and (3) ICEEMDAN has the best mode mixing alleviation performance at the optimal SFR among the four noise-assisted EMD algorithms. The applications include, for instance, tool wear monitoring in machining as well as fault diagnosis and prognosis of complex systems that rely on signal decomposition to extract the components corresponding to specific behaviors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Associated with Linear Regression for Heart beat Rate (HBR) and Respiration Rate(RR) Measurement;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. Research on time-series based and similarity search based methods for PV power prediction;Energy Conversion and Management;2024-05

3. Resolving mode mixing in wheel–rail surface defect detection using EMD based on binary time scale;Measurement Science and Technology;2023-12-15

4. Bearing Fault Diagnosis Based on ICEEMDAN Deep Learning Network;Processes;2023-08-14

5. Research on Weak Vibration Characteristics Based on EMD and Design of MZI Classifier;Journal of Lightwave Technology;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3