Coupled Indirect Torque Control and Maximum Power Point Tracking Technique for Optimal Performance of 12/8 Switched Reluctance Generator-Based Wind Turbines

Author:

Zine MahmoudORCID,Chemsa Ali,Labiod Chouaib,Ikhlef Malika,Srairi KamelORCID,Benbouzid MohamedORCID

Abstract

Maximum power point tracking (MPPT) techniques for wind turbines have a significant effect on renewable energy production. Therefore, the association of the indirect torque control of the switched reluctance generator (SRG) with the wind turbine considering the MPPT technique has been developed in this work. The proposed strategy has a great impact on the production of renewable energy using an SRG machine. The main steps to achieve the object of this work are: First, the wind turbine was modeled and simulated according to the MPPT. In the second step, the indirect torque control strategy, based on the hysteresis current control for SRG 12/8, was realized. This was undertaken using a proportional integral regulator and the hysteresis controller for the torque in order to obtain the appropriate switching based on an asymmetric bridge converter. Moreover, the SRG has high nonlinear characteristics. Thus, the modeling results of this kind of machine are obtained by the use of the finite element method, with its dynamic study performed by the unique estimation of the electromagnetic torque in its generator mode functioning. Finally, the indirect torque control technique of the SRG has also been associated with the MPPT technique to maximize the efficiency power coefficient. The obtained results approve and validate the efficiency of a proposed MPPT of the wind turbine associated with the SRG. This illustrates, simultaneously, the remarkable effects of the turn-switching angles on the operating performances and the high quality of the produced energy. The importance of the effect of varying the turn-switching angles is also presented and discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3