Author:
Zou Pan,Rajora Manik,Lin Chiu-Feng,Lu Ying-Cheng,Ma MingYou,Fan ZhiWen,Chen HungYi,Wu Wen Chieh,Liang Steven Y.
Abstract
A tremendous amount of work has been done in the recent years in the optimization of input parameters, however, current optimization techniques can only provide a single optimal input process parameter combination. Although alternative techniques have been developed to provide multiple solutions with identical objective values, these techniques have low efficiency when searching for multiple solutions. In this paper, a two-stage filter split-optimization approach is proposed to obtain multiple solutions, at a higher efficiency than for a single-objective optimization problem. The aforementioned tasks are accomplished by first performing an initial split-optimization and then performing a second optimization after excluding input parameters from having their range split into sub-ranges based on the results of the initial optimization. The proposed approach enables the algorithm to explore input parameters that have a more significant impact on the objective function, thereby enabling it to find multiple optimal solutions more efficiently. The proposed approach was validated by using it to optimize the input process parameters of an electrochemical machining problem with five input parameters. The results from the case study show that though the proposed approach provided fewer optimal solutions it was able to obtain them at twice the efficiency when compared to the original method.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献