Vibration Attenuation in a Beam Structure with a Periodic Free-Layer Damping Treatment

Author:

Guo Zhiwei12ORCID,Sheng Meiping12,Zeng Hao12ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China

Abstract

In order to improve the vibration reduction performance of damping treatments, a new damping structure consisting of a uniform base layer and two periodically alternating free layers was examined in this study. Closed-form solutions for both the band structure and the forced response of the periodic bi-layer beam were theoretically derived and verified via numerical solutions using the finite-element method. The results showed that the structure with periodic free-layer damping (PFLD) treatment reduced broadband vibrations, and the levels of reduction were dominated by Bragg scattering in the band gaps and damping in the passbands. The vibration experiment verified the derived theory’s accuracy and showed that the PFLD treatment could increase vibration reduction levels in low-frequency band gaps compared with traditional free-layer damping treatments. The effects of the parameters—cell lengths, sub-cell-length ratios, and thickness ratios—were also discussed, providing further understanding of the vibration reduction performance of the bi-layer beam with the PFLD treatment, and this can be used to help designers optimize the periodic bi-layer beam to achieve better performance.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Natural Science Foundation of Shannxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3