Equivalent Consumption Minimization Strategy of Hybrid Electric Vehicle Integrated with Driving Cycle Prediction Method

Author:

Ni Dacheng12,Yao Chao12,Zheng Xin3,Huang Qing2,Luo Derong1,Sun Farong4

Affiliation:

1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

2. Hunan Lixing Power Technology Co., Ltd., Zhuzhou 412001, China

3. ThyssenKrupp Presta Fawer (Changchun) Co., Ltd., Changchun 130033, China

4. College of Automotive Engineering, Jilin University, Changchun 130022, China

Abstract

Hybrid electric vehicles that can combine the advantages of traditional and new energy vehicles have become the optimal choice at present in the face of increasingly stringent fuel consumption restrictions and emission regulations. Range-extended hybrid electric vehicles have become an important research topic because of their high energy mixing degree and simple transmission system. A compact traditional fuel vehicle is the research object of this study and the range-extended hybrid system is developed. The design and optimization of the condition prediction energy management strategy are investigated. Vehicle joint simulation analysis and bench test platforms were built to verify the proposed control strategy. The vehicle tracking method was selected to collect real vehicle driving data. The number of vehicles in the field of view and the estimation of the distances between the front and following vehicles are calculated by means of the mature algorithm of the monocular camera and by computer vision. Real vehicle cycle conditions with driving environment and slope information were constructed and compared with all driving data, typical working conditions under NEDC, and typical working conditions under UDDS. The BP neural network and fuzzy logic control were used to identify the road conditions and the driver’s intention. The results showed that the equivalent fuel consumption of the control strategy was lower than that of the fixed-point power following control strategy and vehicle economy improved.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3