Online Condition Monitoring of Industrial Loads Using AutoGMM and Decision Trees

Author:

Brescia Elia1ORCID,Vergallo Patrizia1,Serafino Pietro2,Tipaldi Massimo1ORCID,Cascella Davide2,Cascella Giuseppe Leonardo1ORCID,Romano Francesca3,Polichetti Andrea4

Affiliation:

1. Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy

2. Idea75 S.r.l., 70121 Bari, Italy

3. Links Management & Technology Spa, 70121 Bari, Italy

4. Free Energy Saving S.r.l., 04100 Latina, Italy

Abstract

Condition monitoring and fault management approaches can help with timely maintenance planning, assure industry-wide continuous production, and enhance both performance and safety in complex industrial operations. At the moment, data-driven approaches for condition monitoring and fault detection are the most attractive being conceived, developed, and applied with less of a need for sophisticated expertise and detailed knowledge of the addressed plant. Among them, Gaussian mixture model (GMM) methods can offer some advantages. However, conventional GMM solutions need the number of Gaussian components to be defined in advance and suffer from the inability to detect new types of faults and identify new operating modes. To address these issues, this paper presents a novel data-driven method, based on automated GMM (AutoGMM) and decision trees (DTree), for the online condition monitoring of electrical industrial loads. By leveraging the benefits of the AutoGMM and the DTree, after the training phase, the proposed approach allows the clustering and time allocation of nominal operating conditions, the identification of both already-classified and new anomalous conditions, and the acknowledgment of new operating modes of the monitored industrial asset. The proposed method, implemented on a commercial cloud-computing platform, is validated on a real industrial plant with electrical loads, characterized by a daily periodic working cycle, by using active power consumption data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Zone Buck-Boost AC Voltage Regulator;2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM);2024-06-28

2. Gearbox Condition Monitoring and Diagnosis of Unlabeled Vibration Signals Using a Supervised Learning Classifier;Machines;2024-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3