Multi-Sensor Data Driven with PARAFAC-IPSO-PNN for Identification of Mechanical Nonstationary Multi-Fault Mode

Author:

Chen Hanxin,Xiong Yunwei,Li Shaoyi,Song Ziwei,Hu Zhenyu,Liu Feiyang

Abstract

Data analysis has wide applications in eliminating the irrelevant and redundant components in signals to reveal the important informational characteristics that are required. Conventional methods for multi-dimensional data analysis via the decomposition of time and frequency information that ignore the information in signal space include independent component analysis (ICA) and principal component analysis (PCA). We propose the processing of a signal according to the continuous wavelet transform and the construction of a three-dimensional matrix containing the time–frequency–space information of the signal. The dimensions of the three-dimensional matrix are reduced by parallel factor analysis, and the time characteristic matrix, frequency characteristic matrix, and spatial characteristic matrix are obtained with tensor decomposition. Through the comparative analysis of the simulation and the experiment, the time characteristic matrix and the frequency characteristic matrix can accurately characterize the normal and fault states of the mechanical equipment. On this basis, the authors established a probabilistic neural network classification model optimized by the improved particle swarm algorithm (IPSO). The parallel factor (PARAFAC) decomposition algorithm can extract features from the centrifugal pump experimental data for normal and multiple fault states, establish the mapping relationship of different fault features of the centrifugal pump in time, frequency, and space, and import the fault features into the model classification. The above measures can significantly improve the fault identification rate and accuracy for a centrifugal pump.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3