Affiliation:
1. McMaster Automotive Resource Center (MARC), Hamilton, ON L8P 0A6, Canada
Abstract
Interior permanent magnet synchronous motors (IPMSMs) are extensively used as traction motors today because of their exceptional torque, power density, and wide, constant power operating range. Under real-world usage, an IPMSM rotor undergoes varying electromagnetic, thermal, and mechanical loads. Under such conditions, fatigue life-based design criteria should be used over stress-based design criteria to ensure the structural integrity of the rotor. Moreover, the driving dynamics can change the rotor temperature continuously, which affects the electromagnetic, mechanical, and fatigue properties of the rotor material. This paper proposes a robust thermomechanical rotor fatigue simulation workflow considering significant loads acting on an IPMSM rotor and the temperature variation throughout a drive cycle. It discusses an accelerated fatigue life estimation approach based on the peak valley extraction method to reduce the simulation time significantly for the stress and fatigue analysis. Then, it presents a method for a stress-life curve generation for variable loading. It also presents a sensitivity study with a median S-N curve, and a 90% reliability and 95% confidence (R90C95) S-N curve.
Funder
Natural Sciences and Engineering Research Council of Canada
Stellantis N.V.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献