Abstract
For the purpose of tackling ultra-wideband (UWB) indoor positioning with signal interference, a binary classifier for signal interference discrimination and positioning errors compensation model combining genetic algorithm (GA) and extreme learning machine (ELM) are put forward. Based on the distances between four anchors and the target which are calculated with time of flight (TOF) ranging technique, GA-ELM-based binary classifier for judging the existence of signal interference, and GA-ELM-based positioning errors compensation model are built up to compensate for the result of the preliminary evaluated positioning model. Finally, the datasets collected in the actual scenario are used for verification and analysis. The experimental results indicate that the root-mean-square error (RMSE) of positioning without signal interference is 14.5068 cm, which is reduced by 71.32% and 59.72% compared with those results free of compensation and optimization, respectively. Moreover, the RMSE of positioning with signal interference is 28.0861 cm, which is decreased by 64.38% and 70.16%, in comparison to their counterparts without compensation and optimization, respectively. Consequently, these calculated results of numerical examples lead to the conclusion that the proposed method displays its wide application, high precision and rapid convergence in improving the positioning accuracy for mobile robots.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献