Mechanical Modeling of Viscous Fluid Damper with Temperature and Pressure Coupling Effects

Author:

Zhang Yunlong1ORCID,Xu Weizhi1ORCID,Wang Shuguang1,Du Dongsheng1,Geng Yan2

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

2. MCC Group, Central Research Institute of Building and Construction Co., Ltd., Beijing 100089, China

Abstract

During long-duration dynamic loads, such as wind loads or seismic effects, the internal temperature and pressure of a damping cylinder escalate rapidly, which induce shifts in the mechanical attributes of viscous fluid dampers (VFDs). This study investigated the mechanical performance of VFD considering the coupling effects of temperature and pressure under long-duration loads. First, we analyzed the mechanical and energy-dissipation performances of the dampers based on the dynamic mechanical tests considering different loading frequencies, displacement amplitude, and loading cycles. The experimental results indicated that both temperature and pressure influenced the output of the dampers, and in the sealed environment of the damper pip, temperature and pressure exerted mutual influence. Furthermore, the relationship between the damping coefficient and temperature–pressure coupling effects was obtained. Subsequently, an improved mathematical model for the mechanical performance of a gap-type VFD was proposed by considering the macroscopic energy balance of the entire fluid within the damper. Finally, the accuracy of the mathematical model for VFD under long-duration dynamic loads was validated by comparing the computational results with the experimental data.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3