Abstract
Reconfigurable Manufacturing Systems (RMSs) rely on a set of technologies to quickly adapt the manufacturing system capacity and/or functionality to meet unexpected disturbances, such as fluctuation/uncertainty of demand and/or unavailability/unreliability of resources. At the operational stage, such disturbances raise new production requirements and risks, which call upon Decision-Makers (DMs) to analyze the opportunity to move from a running configuration to another more competitive one. Such a decision is generally based on an evaluation of a multitude of criteria, and several multi-criteria decision-making (MCDM) approaches have been suggested to help DMs with the reconfiguration process. Most existing MCDM approaches require some assignment of weights to the criteria, which is not a trivial task. Unfortunately, existing studies on MCDM for an RMS have not provided guidelines to weigh the evaluation criteria. This article fills in this gap by offering a framework to set up such weights. We provide a comprehensive set of quantitative indicators to evaluate the reconfiguration decisions during the operation of the RMS. We suggest three weighting methods that are convenient to different levels of DM expertise and desired degree of involvement in the reconfiguration process. These weighting methods are based on (1) intuitive weighting, (2) revised Simos procedural weighting combined with the Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS), and (3) DM independent weighting using ELECTRE IV. The implementation of the suggested framework and a comparison of the suggested methods carried out on an industrial case study are described herein.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献